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Abstract

A novel model updating technique is presented such that the parameters in an analytical finite element
(FE) model can be updated in a robust way in presence of random errors in measured data and systematic
errors in the analytical model. For efficient and robust updating, Taguchi method is applied to the
optimization of the objective function, which is defined by the difference between measured and analytical
vibration data. As reference data for updating, both cases of using frequency as well as modal data are
discussed. To demonstrate the effectiveness of the proposed methods, FE models of truss structure and
cantilever beam are used for numerical simulations of model updating in presence of random and
systematic errors.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In many engineering problems, mathematical model accuracy has been an essential part for
design and analysis. As a way of improving dynamic models, model updating has been widely
used for correcting analytical finite element (FE) models using experimental data.

Most common model updating method is based on eigensensitivity method [1,2]. Here, the
parameters in analytical FE model are updated iteratively using pseudo-inverse of sensitivity
matrix. However, the updated parameters may be non-unique or unreliable if the sensitivity
matrix is under-determined or ill-conditioned. So, the updated results are subject to various noises
in measured data because of the under-determined or ill-conditioned equations to identify the
physical parameters. On the other hand, a large number of frequency response function (FRF)
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data can be used as reference data for updating. However, lots of data from FRFs are redundant
and available data are believed to be equivalent to that of modal data such as natural frequencies
and mode shapes [2]. In order to solve the problem of under-determined or ill-conditioned
equations in model updating, regularization methods have been tried [3] but minimum norm
constraints in regularization method may result in spreading physical parameter changes rather
than locating parameter errors in an analytical FE model and correcting them. Reducing the
number of parameter to be updated can be another option in order to ensure the over-determined
equations for updating [4,5]. However, there exists difficult problem of selecting updating
parameters which might have errors.

Recently, genetic algorithms have been used in an effort to reach the global minimum in
optimization problem of model updating especially in application of damage identification [6–10].
Using genetic algorithm, the problem of non-unique solutions seems to be effectively released.
However, the genetic algorithm is very slow in execution since the method employed is based on
stochastic search. On the other hand, neural network can also be used for model updating [11].
However, the updated results are dependent on the training cases. Recently, Chang et al. have
used orthogonal array as an efficient training method for neural network based updating [12].

If reference data are corrupted by measurement noises, then the updated parameters can be
affected. In addition, the updated parameters are subject to systematic errors such as
discretization errors in an analytical FE model. Therefore, a robust model updating technique
should be used for reliable parameter updating in presence of various errors. On the other hand,
Taguchi method has been widely used for robust design and quality engineering in industry
[13–16]. In this study, as an optimization method for objective function, which is defined by
difference between experimental and analytical data, the concept of Taguchi method is applied to
model updating. The proposed method can be efficient in a computational point of view since
orthogonal arrays are used for screening the main effect of parameters with least number of runs
of simulations. Moreover, the updated results are robust against various noises since parameters
are updated such that the so-called signal to noise (SN) ratio can be maximized. As reference data
for model updating, both cases of frequency data and modal data are discussed for the
comparison of each method. The method using measured FRFs as reference data has advantages
because errors from modal parameter extraction can be eliminated. However, the selection of
reference frequency points for updating may not be easy because the magnitude of FRF at
selected frequency points should be monotonic and smooth according to parameter changes for
reliable updating.

For the demonstration of the proposed method, both truss structure and cantilever beam are
taken as numerical examples. Random noises in simulated experimental data as well as systematic
errors in analytical model are included in the simulation for the verification of robustness.

2. Formulation of objective function

Model updating is to adjust parameters of existing model such that difference between
analytical and experimental data can be minimized. Thus, the updating problem can be
formulated into an objective function, which is defined by the difference between analytical and
experimental data, to be minimized. Recently, as a method for optimization of the objective
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function, genetic algorithm has been used in an attempt to obtain global minimum in presence of
many local minima. The method has advantages because it is less sensitive to the initial values of
the updating parameters. Furthermore, no modal sensitivities have to be calculated. However, the
optimization process using genetic algorithm is slow in nature because of its stochastic approach.
In this work, as an alternative way of optimization of the objective function, Taguchi method,
which has been widely used in robust design in industry, is used. The optimization method
employed in this work has advantages over genetic algorithm in that it can be computationally
efficient due to screening main effects of parameters using orthogonal arrays rather than using
stochastic approach. In addition, the updating process can be more straightforward since it
maximizes the SN ratio, an alternative form of objective function, at each iteration.

2.1. Objective function based on frequency data

The objective function can be defined by the difference between measured FRFs and FRFs
from an analytical model. However, the direct difference of FRFs may result in bad performance
because the objective function is dominated by the FRF resonant peaks. Therefore, it is necessary
to balance the effect of frequency points whether they are selected from near resonance or anti-
resonance. In practice, the difference between the logarithm magnitude of FRFs is considered as
objective function, J1; as [10]

J1 ¼
X

j

X
k

logjHm
j ðokÞj � logjHa

j ðokÞj

ok

� �2

; ð1Þ

where Hm
j ðokÞ and Ha

j ðokÞ are represent measured and analytical FRFs at frequency ok;
respectively. Here, difference between FRFs are divided by frequency, ok; in order to reduce the
gain in high frequencies because the FRFs of higher frequencies are likely to be erroneous due to
the discretization effect in analytical FE model.

The use of measured FRF data as reference data for updating has advantages because the
errors from modal parameter extraction can be eliminated. However, it should be noted that there
is problem of selection of frequency points. In order to update parameters using Taguchi method,
the objective function should be monotonously changed according to the change of parameters.
For stable frequency points, non-monotonous regions of FRF such as frequency points close to
resonances should be avoided. If a parameter, say A; is increasing ðA0oA1oA2Þ; then
corresponding FRF should be increasing or decreasing accordingly at selected frequency points.
Therefore, as seen in Fig. 1, the frequency points, such as o1; which are likely to have non-
monotonous characteristics of FRF, should be avoided. Similar frequency selection method from
monotonous regions of FRF has been discussed by Chang and Park [17].

2.2. Objective function based on modal data

Modal data such as natural frequencies and mode shapes are believed to be essence form of a
large number of frequency domain data. Therefore, there is little loss of information using modal
data unlike a limited number of selected frequency domain data for updating. The objective
function using modal data, J2; is defined by difference between modal data of analytical model
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and experimental data as [6–9]

J2 ¼ WoJo þ WjJj; ð2Þ

where Jo and Jj are objective functions related with natural frequency data and mode shape data,
respectively. Here, Wo and Wj are weighting factor for each objective function, Jo and Jj;
respectively. The each objective function, if first n modes are used, can be written as

Jo ¼
Xn

r¼1

om
r � oa

r

om
r

� �2

and Jf ¼
Xn

r¼1

ðMSFffgm
r � ffga

r Þ
TðMSFffgm

r � ffga
r Þ; ð3Þ

where or and ffgr are natural frequency and mode shape vector, respectively. Here, superscripts
m; a and T represent measured data, analytical data and transpose of a vector, respectively. It
should be noted that modal scale factor, MSF, should be used in order to compare the two
analytical and experimental mode shape directly as [2]

MSF ¼
ðffga

r Þ
Tðffgm

r Þ

ðffgm
r Þ

Tðffgm
r Þ
: ð4Þ

The modal scale factor will also solve the problem that the measured and analytical mode shapes
could be 180	 out of phase. In order to pair analytical data and experimental data properly,
modal assurance criterion (MAC) should be used as [2]

MACjk ¼
jðffgm

j Þ
Tðffga

kÞj
2

ððffgm
j Þ

Tðffgm
j ÞÞððffg

a
kÞ

Tðffga
kÞÞ

: ð5Þ

The MAC has its value between 0 and 1 according to the closeness between eigenvectors of
analytical and experimental modes. If the modes pair in order, then the MAC matrix will have
values close to 1 on the diagonal and close to 0 elsewhere.

It has been known that proper weightings, Wj and Wo; of objective function in Eq. (2) can
improve results significantly. Therefore, relative weights of natural frequencies and mode shapes
should be chosen carefully. The effect of weighting values, Wj and Wo; on updated results has
been discussed in Ref. [6–9]. Because the proposed method uses the same objective function, the
conclusions in the references can be applied to the proposed method. Since, natural frequencies
are more accurately measured than mode shapes, the weighting value on natural frequencies, Wo;
is set to be higher than the weighting on mode shapes, Wj: However, if too much weighting on
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Fig. 1. Frequency response functions according to parameter value changes: —— A0; A1; and A2:
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natural frequency, Wo; and too little weighting on mode shape, Wj; were used in objective
function, the information from mode shapes might disappear. Considering these facts, Wo ¼ 10
and Wj ¼ 1 are used throughout simulations.

The updated results are also influenced by the number of modes included in objective function
[7]. A sufficient number of modes should be included in the objective function in order to identify
the parameters concerned. However, it should be noted that using high modes may not be reliable
in many cases because those are subjected to various errors not only from the measurement but
also from the discretization effect in analytical FE model.

2.3. Signal to noise (SN) ratio

In order to increase robustness of design against noises, Taguchi used the concept of SN ratio
[13]. According to Taguchi method, the loss function, which is equivalent to objective function, J;
can be divided into three characteristics: (1) nominal-the-best; (2) smaller-the-better; (3) larger-
the-better [13–16]. In this work, the optimization of objective function defined in Eqs. (1) and (2)
can be classified into smaller-the-better process. Then, SN ratio can be defined by

SN ¼ �10 log
1

n
J

� �
; ð6Þ

where n is the number of modes or number of frequency points. Then, the minimization of J
becomes maximization of SN ratio which is measured in decibels (dB).

3. Model updating using Taguchi method

The robust design method using Taguchi method uses a mathematical tool called orthogonal
array to study a large number of decision variables with a small number of experiments [13–16]. It
also uses a new measure of quality, so-called signal to noise (SN) ratio, for robust design against
noises [13–16]. In this study, these two concepts are effectively applied to model updating.

3.1. Orthogonal array

In order to maximize the SN ratio by adjusting parameters, the main effects of each parameter
should be evaluated. To investigate whole effects of each parameter requires a lot of
computational efforts especially when a large number of parameters are required to be updated.
Therefore, the orthogonal array is used in order to reduce the number of simulations efficiently
for the investigation of main effect of each parameter [13–16]. For example, if whole effect of p
parameters with 3 levels were investigated using full factorial design, then the total number of
simulations to investigate every effect of parameters would be 3 p: Here, the number of
simulations increases exponentially with increase of the number of parameters. However, if
orthogonal array (OA) is used for screening main effect of p parameters with 3 levels, only 2p þ 1
or slightly greater number of runs of simulation are required [14]. Therefore, OA is sometimes
called fractional factorial design because it screens factors, or parameters, in an efficient way
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rather than simulate all possible combination of cases. The orthogonal array is extensively
discussed in reference [18] and can be downloaded from website [19].

The OA can be represented by notation, OAðN; p; s; tÞ where N; p; s and t represent the number
of experiments, factors (parameters), levels and strength, respectively [18]. Here, the strength
means number of columns, which can be seen equal number of times in OA. Note that different
notation, LNðspÞ; is also frequently used for orthogonal array of OAðN; p; s; tÞ [13–16]. In this
study, orthogonal array with 3-level factors is used for optimization of parameters [15,16] because
it can cover wider range of parameter variation than using 2-level factors. On the other hand, if
the number of updating parameters is large, then the use of OA with 2-level factors can be
advantageous because the number of simulations for screening parameters can be reduced [20]. It
should be also noted that a very large OA can be easily constructed in order to deal with large
number of parameters [18].

Without loss of generality, the orthogonal array of OAð9; 4; 3; 2Þ is used for the explanation of
the proposed method. Table 1 shows the OAð9; 4; 3; 2Þ; which requires 9 runs of simulations to
investigate the main effect of up to 4 factors with 3 levels. Note that each column or row of OA in
Table 1 consists of ‘0’, ‘1’ and ‘2’, which represent levels of a factor. Parameters to be updated are
assigned to the columns in OA whereas rows represent the parameter setting method for efficient
main effect screening of each parameter concerned. If the number of parameters is less than the
number of columns in OA, not assigned columns can be left to be empty. Therefore, it is required
to select the orthogonal array with equal or more number of columns than number of parameters
to be updated. If OA with much larger size than necessary is used, then the number of simulations
increases accordingly. Therefore, the smallest possible orthogonal array is recommended to be
chosen if interactions between parameters can be neglected. For example, if the number of
parameters is assumed to be 10, then the orthogonal array of OAð27; 13; 3; 2Þ is recommended to
be used rather than OAð81; 40; 3; 2Þ: Even though the updated results are likely to be the same by
using either of two OAs, the use of OAð27; 13; 3; 2Þ for screening the main effects of 10 parameters
has advantages because computational efforts can be significantly reduced from 81 runs of
simulations to 27.
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Table 1

OAð9; 4; 3; 2Þ orthogonal array

Run number Parameters SN ratio

1 ðAÞ 2 ðBÞ 3 ðCÞ 4 ðDÞ

1 0 0 0 0 SN1

2 0 1 1 2 SN2

3 0 2 2 1 SN3

4 1 0 1 1 SN4

5 1 1 2 0 SN5

6 1 2 0 2 SN6

7 2 0 2 2 SN7

8 2 1 0 1 SN8

9 2 2 1 0 SN9

K.-S. Kwon, R.-M. Lin / Journal of Sound and Vibration 280 (2005) 77–9982



3.2. Parameter updating using SN ratio

Without loss of generality, a design problem with 4 design variables, A; B; C and D; is
considered, as an illustrative example, to be optimized simultaneously using Taguchi method. It
should be noted that the design variables correspond to parameters of analytical FE model to be
updated. Here, OAð9; 4; 3; 2Þ shown in Table 1 is used for the explanation of updating process
employed in this work. Each design parameter can be assigned to columns in OAð9; 4; 3; 2Þ in
arbitrary manner. In this study, for the sake of convenience, the parameters are assigned from the
first column to next columns in sequence such that A; B; C and D are assigned to 1st, 2nd, 3rd and
4th columns, respectively. In orthogonal array as seen in Table 1, ‘1’ represents the current level of
parameters or starting level whereas ‘0’ and ‘2’ represents the decreased and increased level,
respectively, by predefined level intervals of each parameter, Dk

i ; i ¼ A; B; C; and D: Here,
superscript, k; represents iteration index in order to account for iterative process of updating. The
main effect on SN ratio of decreased or increased value of parameters, which are represented by
‘0’ and ‘2’, respectively, are compared with the main effect of current level of parameters, which
are represented by ‘1’. Then, the parameters are adjusted according to the screened main effect of
each parameter in order to maximize SN ratio. This procedure continues iteratively until the SN
ratio no longer increases.

In order to screen the main effect of each parameter concerned, total 9 runs of simulation
associated with rows in OAð9; 4; 3; 2Þ should be performed. For example, if the first and second
rows in OAð9; 4; 3; 2Þ are considered, then corresponding each SN ratios, SNk

1 and SNk
2 ; can be

calculated from setting levels of each parameter according to the row vectors of OA as

SNk
1 ¼ SNðAk

0Bk
0Ck

0Dk
0Þ and SNk

2 ¼ SNðAk
0Bk

1Ck
1Dk

2Þ; ð7Þ

where SNk
j ; j ¼ 1; 2; are SN ratios calculated by Eq. (6), where subscript j in SN ratio represents

run number of simulations related with rows in OA. Here, the levels ‘0’ and ‘2’ of each parameter,
Ak

i ; Bk
i ; Ck

i ; and Dk
i ; i ¼ 0; 2; can be obtained from the current level ‘1’ of parameters, Ak

1 ; Bk
1 ; Ck

1 ;
and Dk

1 ; as

Ak
0 ¼ Ak

1 � Dk
A; Bk

0 ¼ Bk
1 � Dk

B; Ck
0 ¼ Ck

1 � Dk
C ; Dk

0 ¼ Dk
1 � Dk

D;

Ak
2 ¼ Ak

1 þ Dk
A; Bk

2 ¼ Bk
1 þ Dk

B; Ck
2 ¼ Ck

1 þ Dk
C and Dk

2 ¼ Dk
1 þ Dk

D: ð8Þ

Here superscript, k; represents the iteration number to account for iteration process. Similar to
SNk

1 and SNk
2 ; other SN ratios, SNk

j ; j ¼ 1; 2;y; 9; can be obtained according to the OA in
Table 1.

Then, the average SN ratios for levels Ak
0 ; Ak

1 and Ak
2 of parameter A; SNðAk

0Þ; SNðAk
1Þ and

SNðAk
2Þ can be obtained from the corresponding columns of OA as

SNðAk
0Þ ¼

SNk
1 þ SNk

2 þ SNk
3

3
; SNðAk

1Þ ¼
SNk

4 þ SNk
5 þ SNk

6

3

and SNðAk
2Þ ¼

SNk
7 þ SNk

8 þ SNk
9

3
: ð9Þ
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Similarly, the average SN ratio for levels Bk
0 ; Bk

1 and Bk
2 of parameter B; SNðBk

0Þ; SNðBk
1Þ and

SNðBk
2Þ; can be obtained from

SNðBk
0Þ ¼

SNk
1 þ SNk

4 þ SNk
7

3
; SNðBk

1Þ ¼
SNk

2 þ SNk
5 þ SNk

8

3

and SNðBk
2Þ ¼

SNk
3 þ SNk

6 þ SNk
9

3
: ð10Þ

Then, the main effects of parameter, A; at levels, Ak
0 ; Ak

1 and Ak
2 are given by ðSNðAk

0Þ � SNk
aveÞ;

ðSNðAk
1Þ � SNk

aveÞ and ðSNðAk
2Þ � SNk

aveÞ; respectively. Here, SNk
ave is defined by

SNk
ave ¼

ðSNk
1 þ SNk

2 þ 
 
 þSNk
9 Þ

9
: ð11Þ

Similarly, the main effects of parameter at levels, Bk
0 ; Bk

1 and Bk
2 ; are given by ðSNðBk

0Þ � SNk
aveÞ;

ðSNðBk
1Þ � SNk

aveÞ and ðSNðBk
2Þ � SNk

aveÞ; respectively. Other main effects of parameters concerned
can be obtained from OA in a similar manner. Since orthogonal arrays are perfectly balanced for
each parameter, other effects are averaged out in order to calculate the main effect of specific
parameters [13–15]. Note that the total 9 runs of simulation are needed to evaluate the main
effects of each parameter concerned in case of using OAð9; 4; 3; 2Þ: The main effects of each
parameter on SN ratio can be effectively visualized in plots of factor effects as in Fig. 2.

If the main effects are to be evaluated for each parameter at iteration, k; then, analysis of
variance (ANOVA) should be performed in order to determine if individual parameter is
significant by comparing its variation with the overall variation [13–15]. The variance of each
parameter, VkðiÞ; i ¼ A; B; C and D; can be written from

VkðiÞ ¼ ðSNðik
0 Þ � SNk

aveÞ
2 þ ðSNðik

1 Þ � SNk
aveÞ

2 þ ðSNðik
2 Þ � SNk

aveÞ
2; i ¼ A; B; C and D: ð12Þ

There are two methods for ANOVA. The one method is to use the unassigned column in OA as
an error column and only parameters, whose variance is greater than that of the error column, are
selected for updating [14,15]. The parameters whose effect is similar to or even smaller than that of
error column can be considered as insignificant parameters. The parameters with small variances
are not used for updating since the results are subject to various noises. The other method is to use
Pareto ANOVA, which quantifies the importance of each parameter and prioritizes activities for
improvement [14]. In this study, for the sake of simplicity, Pareto ANOVA is used to select
important parameters for updating and the parameters with small effect are not used for
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updating. For this purpose, only significant factors or parameters, which cumulatively contribute
to 95% of total summation variance of each factor, are selected. This is a quick and easy method,
which does not require ANOVA table or F-test [14]. For example, when the main effect of
parameters are shown in plots of factor effects as Fig. 2, the main effect of parameter, D; whose
variance of main effects is small compared with that of other parameters, is ignored.

The model updating process employed in this work is to adjust the parameters in analytical FE
model for the maximization of SN ratio. For illustrative example, the main effects of each
parameter is assumed to be represented by the plots of factor effects shown in Fig. 2. Then, the
parameters are updated in such a manner to maximize SN ratio. If the main effect of SN ratios of
a parameter are decreasing or increasing according to the parameter change as shown in Fig. 2(a)
or (c), then, parameters are updated to be decreased or increased at the next step, k þ 1; to
maximize the SN ratio, as

Akþ1
1 ¼ Ak

1 � kDk
A and Ckþ1

1 ¼ Ck
1 þ kDk

C with Dkþ1
A ¼ Dk

A and Dkþ1
C ¼ Dk

C ; ð13Þ

where superscript k represents iteration index. Here, k is a constant related with amount of
parameter changes at the next step. In most cases, the value of k is set to one [15,16]. However, in
order to check the SN values between levels, the value of k is set to 0.5 in this study. The use of k
with the value of less than 1 might be advantageous because global minimum is more likely to be
sought by searching optimal parameters between levels. However, it should be noted that the use
of k close to 0 should be avoided because updating process is likely to be very slow. On the other
hand, if a parameter approaches to the optimum value, the SN ratio of the parameter is maximum
at current level such as Bk

1 in Fig. 2(b). Then the parameter is updated to remain the same value
and level interval is reduced to half as [16]

Bkþ1
1 ¼ Bk

1 and Dkþ1
B ¼

Dk
B

2
: ð14Þ

Here, by reducing the level intervals using Eq. (14), precise optimum value can be found. In case of
small main effect such as parameter, D; in Fig. 2(d), Dkþ1

1 ¼ Dk
1 is used instead of increasing

parameters at next step because the main effect of parameter, D; is ignored due to the small variance
of the parameter. After updating current level ‘1’ at iteration step, k þ 1; using Eqs. (13) and (14),
other two levels, ‘0’ and ‘2’, at k þ 1; are calculated using Eq. (8). Then, the same updating process
is repeated until the optimum values are sought where the SN ratio no longer increases.

4. Numerical example

For the verification of the proposed scheme for model updating, FE models of truss structure
and cantilever beam are used for numerical simulations. For reference data, the so-called
structural model with 10 times finer element than analytical model is used to generate simulated
experimental data. The structural model can be considered to be more close to real structure
[21,22]. By using structural model, the effect of discretization errors on updated results, which is
inherent in analytical FE model, can be investigated. For the verification of robustness of the
proposed updating method, random errors in experimental data as well as systematic error in
analytical model are considered.
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4.1. Cantilever beam

For demonstration of the proposed method, cantilever beam with 10 elements shown in
Fig. 3(a) is considered as analytical model for parameter updating. For the simulation of
measured vibration data such as FRF and modal data, a structural model with fine mesh shown in
Fig. 3(b) is used to generate vibration data. The following parameters are used for both models:
modulus of elasticity E ¼ 2:06� 1011 N=m2; cross sectional area AR ¼ 0:02� 0:02 m2; length of
cantilever beam l ¼ 0:8 m: For systematic error in analytical model, parameter error is included
throughout the simulations such that the density, r ¼ 7895 kg=m3; is used for analytical model
whereas the density of structural model is assumed to be r ¼ 7973:95 kg=m3 which is 1% higher
than that of analytical model.

In this work, for the updating parameters of analytical FE model, the 10 non-dimensional
parameters, bi; are considered, which are defined by ratio of modulus of elasticity, E; of each
element, i; in analytical FE model

bi ¼
Ed

i

Eo
i

; i ¼ 1; 2;y; 10; ð15Þ

where superscripts, d and o; represent damaged and original parameters, respectively. In this
work, the optimum values of bi are sought in an iterative way in order to maximize SN ratio.
Then, by investigation of updated values of bi; parameter errors in analytical model can be
identified and corrected. As an illustrative example, damaged structural model of cantilever beam
shown in Fig. 3(b), which has stiffness reduction of 50% and 30% in 21–30th and 61–70th
elements, respectively, is considered for generation of reference data for updating parameters in
analytical model. So, the updating problem in cantilever beam is to update each parameter in
analytical model, whose value are 0obip1 for physical consideration, in order to identify the
damages in structure, which are represented by parameter errors in analytical model.

4.1.1. Model updating using FRF
For an illustrative example of model updating using FRFs, 3 FRFs, whose measurement points

are at 2, 6 and 10 with excitation point at free end (at 10) in Fig. 3(b), are assumed to be available

ARTICLE IN PRESS

(a) 

(b)

1~10 11~20 31~40 41~50 51~60 71~80 81~90 91~100 61~70 21~30 

1 2 4 5 6 8 9 10 73 

1 2              3 4 5 6 7 8 9 10 

Fig. 3. Cantilever beam: (a) analytical model; and (b) structural model.
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as reference data. Each measured FRF, which is obtained from structural model, is contaminated
with random noise such that

H 0
2ðokÞ ¼ H2ðokÞð1þ sÞ; H 0

6ðokÞ ¼ H6ðokÞð1þ sÞ and

H 0
10ðokÞ ¼ H10ðokÞð1þ sÞ; ð16Þ

where superscript, 0; indicates noise polluted experimental FRFs and subscripts, 2, 6 and 10, in
FRFs represent the measurement point in Fig. 3(b). Here, for the test of robustness against
measurement noise, 5% uniform distributed random noise, s; is considered in this study. The
initial values of updating parameters in analytical model are set to 1, that is, b1

i ¼ 1; i ¼
1; 2;y; 10: As seen in Fig. 4, there are differences between the FRFs of initial analytical model
and simulated measured data. The differences are to be corrected by updating analytical FE
model. For reference data, 6 frequency points (30, 170, 500, 950, 1500, 2300 Hz) are carefully
selected from measured FRFs such that frequency points from non-monotonic regions can be
avoided.

In order to investigate the main effects of 10 parameters, OAð27; 13; 3; 2Þ; which is downloaded
from website [19], is used. Here, 10 parameters are assigned to OAð27; 13; 3; 2Þ in sequential
manner and last 3 columns are left to be empty. The initial level intervals, D1

bi
; i ¼ 1; 2;y; 10; are

set to 0.05, which correspond to 5% of initial parameters. Here, initial level intervals should be set
between 0 and 1 for physical consideration. If too small initial level intervals were used, the main
effects of parameters might be subject to the noises and convergence tends to be slow. On the
other hand, initial level intervals with large value should be avoided because too much deviation
of analytical FRFs from the experimental data may result in non-monotonous characteristics of
FRFs at selected frequency points. Note that the level intervals are apt to be smaller value because
the level intervals are decreased by half using Eq. (14) when the parameters approach to the
optimum values. So, after dozens of iterations, the level intervals can be very small and the
updating process might be slown down. However, the problem can be effectively released by re-
setting level intervals, for example, Dk

bi
¼ 0:01; i ¼ 1; 2;y; 10; at every 50 iteration (k ¼ 50; 100,

150, etc).
Fig. 5(a) shows the updated results of parameters after 200 iterations. Here, the selection of

stable frequencies out of a large number of frequency points might result in loss of information.
Therefore, the updated results may not be exact enough to identify damages or parameter errors
in terms of location as well as severity as seen in Fig. 5(a). Nevertheless, as seen in Fig. 4, the
differences between updated analytical and experimental FRFs are reduced significantly by
maximization of SN ratio as shown in Fig. 5(b). The increased SN ratio means closeness between
analytical and experimental data. The updated results can be significantly improved if more
number of FRFs or frequency points are used as reference data. On the other hand, the use of
frequency domain criteria proposed by Zang et al. [23] can be useful because a lot of frequency
data may be incorporated into objective function without selection of stable frequency points. The
use of different form of frequency data is beyond the scope of this paper.

4.1.2. Model updating using modal data

For the objective function using modal data, modal data from structural model of cantilever
beam are used as reference data for updating 10 parameters in analytical FE model. The analytical
model has both rotational and translational degrees of freedom. In practice, mode shapes
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associated with rotational degree of freedom are not directly available from experimental data. In
this study, mode shape data from translational degrees of freedom at 10 measured points in
structural model shown in Fig. 3(b) are used as reference data for the objective function in Eq. (2).

Since the structural model is more close to real structure, discretization effect of analytical
model can be understood by comparison of two modal data from structural and analytical model.
Table 2 shows the eigenvalues and MAC of exactly the two same models with different number of

ARTICLE IN PRESS

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0 1000 2000 3000 4000
1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

Frequency (Hz) 

(a) 

(b) 

(c) 

Fig. 4. Magnitude plots of FRFs of cantilever beam: (a) H2ðoÞ; (b) H6ðoÞ; (c) H10ðoÞ; initial analytical model;

updated analytical model; and structural model.

K.-S. Kwon, R.-M. Lin / Journal of Sound and Vibration 280 (2005) 77–9988



elements. As seen in Table 2, the discretization errors are not severe at first 10 modes using
analytical model with 10 elements. However, it should be noted that special care should be taken
when using higher modes because the updated results are subject to discretization errors.
Considering the discretization effect, first 8 modes are used as reference data for updating 10
parameters of analytical model. For the demonstration of robustness against random noise, 1%
and 5% random noises are added to natural frequencies and mode shapes of simulated
experimental data obtained from structural model, respectively.

In order to investigate the main effect of each parameter, orthogonal array, OAð27; 13; 3; 2Þ;
which requires 27 runs of simulations at each iteration, is used. The initial parameters are set to be
b1

i ¼ 1; i ¼ 1; 2;y; 10; with initial level intervals to be D1
bi
¼ 0:3; i ¼ 1; 2;y; 10: Here, the initial

level intervals can be chosen from wider range of values unlike the case of using FRFs as reference
data. However, it should be noted that initial level intervals close to 1 should be avoided since the
pairing of natural frequencies and mode shapes using Eq. (5) can be unreliable due to the large
variance of parameters.

Table 3 shows the initial and updated modal data, such as eigenvalues and mode shapes
(MAC), of analytical model. As seen in Table 3, the differences between analytical and
experimental modal data can be reduced significantly by updating the analytical model. By
updating the analytical model, parameter errors in analytical FE model can be located and
corrected. As seen in Fig. 6, damages in cantilever beam can be identified with reasonable
accuracy even in presence of random, parameter and discretization errors.
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Fig. 6(b) shows the SN ratio plot of updating process. Here, SN ratio seems to be reached at
maximum value after 20 iterations. However, since level intervals are changed into smaller value
using Eq. (14), the level interval can be very small after dozens of iterations. This small level
intervals might result in local minimum solutions. On the other hand, the possible local minimum
solutions can be avoided effectively by level interval re-setting, for example, Dk

bi
¼ 0:01; i ¼

1; 2;y; 10; at every 50 iteration (k ¼ 50; 100, 150, etc.) as seen in SN ratio plot of Fig. 6(b).

4.2. Truss structure

For the demonstration of practical applicability, analytical FE models of plane truss structure
with 36 elements and 72 elements, which is shown in Fig. 7(a) and (b), are considered for model
updating. The FE models have 3 degree of freedom at each node, which results in total 90 and 198
degrees of freedom for FE models with 36 and 72 elements, respectively. In truss application,
modal data from the structural model with 360 elements are used as reference data. Note that the
modal data are essence form of a large number of FRF data points and data loss from the
selection of frequencies can be avoided. For simulations, the following parameters are used for
analytical FE model and structural model: modulus of elasticity E ¼ 0:75� 1011 N=m2; second
moment of area of each member I ¼ 0:0756 m4; cross sectional area of member Ar ¼ 0:004 m2:
For the simulation of incomplete measurement, only translational degrees of freedom at 6
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Table 2

Discretization effect of FE model of cantilever beam (Undamaged with no other errors) ðr ¼ 7973:95 kg=m3Þ

Modes 10 elements 100 elements Errors (%) MAC (diagonal)

analytical model structural model

(eigenvalue, Hz) (eigenvalue, Hz)

1 25.66 25.66 0.00 1.000

2 160.8 160.80 0.00 1.000

3 450.35 450.24 0.02 1.000

4 883.13 882.29 0.10 1.000

5 1460.2 1458.5 0.25 1.000

6 2190.2 2178.7 0.54 1.000

7 3073.4 3043.0 1.00 1.000

8 4117.4 4051.3 1.63 1.000

9 5323.8 5203.7 2.31 1.000

10 6618.3 6500.2 1.82 0.996

11 8808.6 7940.7 10.93 0.996

12 10642 9525.3 11.72 0.982

13 12900 11254 14.63 0.980

14 15570 13127 18.61 0.972

15 18710 15143 23.56 0.961

16 22377 17304 29.32 0.945

17 26558 19609 35.44 0.924

18 31005 22059 40.55 0.895

19 34915 24652 41.63 0.854

20 43696 27390 59.53 0.292
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measurement points are assumed to be available for mode shape data as reference data
throughout simulation as shown in Fig. 7(c).

In this study, stiffness modelling errors in analytical model, without loss of generality, are
considered such that modal data are generated as reference data from structural FE model which
has different modulus of elasticity at 2nd, 5th and 10th members (b2 ¼ 1:1; b5 ¼ 0:85 and
b10 ¼ 1:2). Note that 2nd and 10th members of truss have increased values of modulus of
elasticity whereas 5th member has decreased value. Therefore, the total effect on eigenvalues of
structural model is mixed up and differences in eigenvalues between structural and initial
analytical model appear to be small as seen in Tables 5 and 6. Therefore, the eigenvectors must be
incorporated in objective function in order to locate parameter errors in analytical model.

For consideration of systematic parameter error in analytical model, the density of each
member for structural model is assumed to be r ¼ 2828 kg=m3 which is 1% higher than r ¼
2700 kg=m3 of analytical model. For the demonstration of robustness against random noise, 1%
and 5% random noises are added to natural frequencies and mode shapes of simulated
experimental data from structural model, respectively.

4.2.1. Model updating using analytical model with coarse elements

Prior to updating analytical FE model, discretization effect, which is inherent in FE model,
needs to be evaluated. Table 4 shows the discretization effect of analytical models with 36 and 72
elements. In this section, first 8 modes of truss structure are considered as reference data for
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Table 3

Modal data of initial and updated analytical FE model of cantilever beam (using first 8 modes as reference data)

Modes Reference data Analytical model Initial MAC Updated model Updated MAC

(Hz) (initial eigenvalue) (diagonal) (eigenvalue) (diagonal)

1 23.62 25.79 ð9:15Þ� 1.000 23.46 ð�0:68Þ� 1.000

2 155.10 161.6 ð4:19Þ� 1.000 154.45 ð�0:42Þ� 1.000

3 411.75 452.6 ð9:92Þ� 0.996 410.51 ð�0:30Þ� 1.000

4 834.06 887.53 ð6:41Þ� 0.995 832.77 ð�0:15Þ� 1.000

5 1396.5 1469.5 ð5:23Þ� 0.996 1391.5 ð�0:36Þ� 1.000

6 2074.2 2201.4 ð6:13Þ� 0.992 2069.8 ð�0:21Þ� 1.000

7 2875.5 3088.7 ð7:41Þ� 0.990 2889.3 ð0:48Þ� 1.000

8 3816.0 4138.0 ð8:44Þ� 0.982 3863.9 ð1:26Þ� 1.000

9 4911.4 5350.4 ð8:94Þ� 0.985 4987.8 ð1:56Þ� 1.000

10 6120.5 6651.3 ð8:65Þ� 0.993 6182.5 ð1:00Þ� 0.998

11 7567.4 8852.5 ð16:98Þ� 0.935 8353.3 ð10:39Þ� 0.990

12 9060.4 10695 ð18:04Þ� 0.963 10127 ð11:77Þ� 0.980

13 10524 12965 ð23:19Þ� 0.936 11991 ð13:77Þ� 0.980

14 12413 15648 ð26:06Þ� 0.883 14606 ð17:67Þ� 0.973

15 14389 18803 ð30:68Þ� 0.898 17581 ð22:88Þ� 0.908

16 16363 22488 ð37:43Þ� 0.884 21566 ð31:80Þ� 0.899

17 18574 26690 ð43:70Þ� 0.855 25159 ð35:45Þ� 0.951

18 20873 31160 ð49:28Þ� 0.777 28561 ð36:83Þ� 0.824

19 23239 35089 ð50:99Þ� 0.762 33168 ð42:73Þ� 0.794

20 25821 43914 ð70:07Þ� 0.308 43183 ð67:24Þ� 0.308

ð Þ�: errors (%).
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updating 12 parameters of FE model with 36 elements. Then, the eigenvalue errors from
discretization effect are up to about 4% as seen in Table 4. Therefore, the updated parameters might
be subject to discretization errors because the parameters in analytical model are updated such that
the both errors from parameters and discretization in FE model are minimized simultaneously.

In order to update 12 parameters of analytical model with 36 elements shown in Fig. 7(a),
OAð27; 13; 3; 2Þ is used for the screening the main effect of each parameter. Here, OAð27; 13; 3; 2Þ
can handle 13 parameters with 27 runs of simulations for screening parameters. In this example,
12 parameters are assigned to columns of OAð27; 13; 3; 2Þ in sequential manner and the last
column of the OA is left to be empty. The initial parameters of analytical model are set to be
b1

i ¼ 1; i ¼ 1; 2;y; 12; with initial level intervals to be D1
bi
¼ 0:1; i ¼ 1; 2;y; 12: Here, as a scheme

for avoiding possible local minimum solutions, level intervals are set to Dk
bi
¼ 0:01; i ¼ 1; 2;y; 12;

at every 50 iteration (k ¼ 50; 100, 150, etc.).
Table 5 shows the initial and updated eigenvalues and MAC (eigenvectors). Here, it should be

noted that the accuracy of updated eigenvalues and eigenvectors can be varied according to the
weightings used in objective function in Eq. (2). If higher weighting on eigenvalues (eigenvectors)
is used, then the updated eigenvalues (eigenvectors) are more accurate. However, the update
eigenvectors (eigenvalues) of analytical model may not be close to those of measured mode shapes
(natural frequencies). In this study, Wo ¼ 10 and Wj ¼ 1 are used for weighting values in Eq. (2)
as discussed in Section 2.2. As seen in Table 5, updated diagonal MAC is almost 1 for the first 8
modes. In addition, the updated eigenvalues of first 8 modes have less than 1% errors compared
with reference data, which are almost similar levels to random noises added in reference
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eigenvalue data. Thus, the updated first 8 modal data of analytical model with 36 elements seem to
be close to the reference data. However, higher modes (especially mode shapes) of updated
analytical model, which are not included in objective function, are not close enough to that of
simulated measured data as seen in Table 5. Furthermore, as seen in Fig. 8, the parameter errors
of analytical model are difficult to be located and corrected sufficiently due to the various errors
especially from discretization errors. If the discretization errors are large, updating parameters
will compensate the errors by changing its values. Therefore, the updated parameters are likely to
lose their physical meanings in case where the discretization errors are significant [22].
Nonetheless, the SN ratio has increased as a result of parameter updating as seen in Fig. 8.
The increase in SN ratio means the closeness between analytical and experimental modal data
used in objective function.
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4.2.2. Model updating of analytical model with fine elements
If the discretization effects are significant, updating parameters are likely to compensate the

errors from discretization. Here, the compensation for the discretization errors will distort the
physical meanings of the updating parameters [21]. Since the disrectization errors, if not
negligible, can affect the updated parameters, proper treatment of the errors is needed. The
compensation method of discretization errors using parameters, especially using modulus of
elasticity, has been discussed to minimize those errors prior to updating [21]. However, it can have
limitations because the discretization errors are not directly related with parameter errors and
cannot be compensated fully by adjusting parameters [22]. The discretization errors are related
with number of elements used in analytical FE model. Therefore, the errors from discretization
effect can be significantly reduced by using FE model with fine mesh. In this study, as a way to
reduce the discretization errors, fine analytical model with 72 elements shown in Fig. 7(b) is used
to update 12 parameters, which correspond to modulus of elasticity in each truss member. Then,
eigenvalue errors from discretization effect can be limited less than 1% for first 8 modes concerned
as seen in Table 4. Then, the updated parameters can locate parameter errors and correct them
with reasonable accuracy as seen in Fig. 9(a). Note that, as seen in Fig. 9(b), SN ratio is
maximized in spite of various errors including random and systematic errors as well as incomplete
measurement.
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Table 4

Discretization effect of truss structure (with same parameters and no other errors) ðr ¼ 7973:95 kg=m3Þ

Modes 360 elements 36 elements MAC 72 elements MAC

structural model analytical model 36 elements analytical model 72 elements

(eigenvalue, Hz) (eigenvalue, Hz) (diagonal) (eigenvalue, Hz) (diagonal)

1 46.15 46.16 ð0:02Þ� 1.000 46.15 ð0:00Þ� 1.000

2 81.65 81.72 ð0:09Þ� 1.000 81.67 ð0:02Þ� 1.000

3 234.87 236.71 ð0:78Þ� 1.000 235.32 ð0:19Þ� 1.000

4 253.82 254.74 ð0:36Þ� 1.000 254.05 ð0:09Þ� 1.000

5 378.05 385.79 ð2:05Þ� 1.000 379.98 ð0:51Þ� 1.000

6 432.08 446.93 ð3:44Þ� 0.975 435.75 ð0:85Þ� 0.999

7 442.69 460.13 ð3:94Þ� 0.997 446.9 ð0:95Þ� 1.00

8 466.15 481.53 ð3:30Þ� 0.965 470.23 ð0:88Þ� 0.997

9 482.83 500.51 ð3:66Þ� 0.975 487.12 ð0:89Þ� 0.998

10 501.87 514.95 ð2:61Þ� 0.981 504.8 ð0:58Þ� 0.999

11 511.13 531.86 ð4:06Þ� 0.523 516.56 ð1:06Þ� 0.896

12 512.86 534.23 ð4:17Þ� 0.300 517.49 ð0:90Þ� 0.984

13 544.66 569.16 ð4:50Þ� 0.984 550.54 ð1:08Þ� 0.999

14 632.06 647.0 ð2:36Þ� 0.984 636.01 ð0:62Þ� 0.998

15 660.95 688.54 ð4:17Þ� 0.783 668.83 ð1:19Þ� 0.985

16 692.55 713.36 ð3:00Þ� 0.835 697.4 ð0:70Þ� 0.992

17 761.98 804.13 ð5:53Þ� 0.975 773.88 ð1:56Þ� 0.997

18 869.13 901.66 ð3:74Þ� 0.810 884.59 ð1:78Þ� 0.898

19 884.9 968.75 ð9:48Þ� 0.025 911.92 ð3:05Þ� 0.457

20 887.04 977.32 ð10:18Þ� 0.447 914.6 ð3:11Þ� 0.768

ð Þ�: errors (%).
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Table 6 shows the initial and updated modal data using first 8 modes as reference data for
updating. By updating parameters, the initial errors of eigenvalues and eigenvectors are reduced
to acceptable levels. In order to investigate closeness between analytical and experimental
eigenvectors, MAC is used. As seen in Table 6, the diagonal values of updated MACs are more
close to 1 than those of initial MACs. The MAC value close to 1 means eigenvector of an
analytical model is close to that of reference (experimental) model at a specific mode. When
compared with Table 5 of coarse analytical model, the updated eigenvalues and eigenvectors of
fine analytical model are more close to reference data because discretization errors can be reduced
to an acceptable level. Note that even higher modes, which are not included in objective function,
become close to those of reference after updating of parameters. For example, 9th and 12th
updated MACs, which represent correlation between updated and reference eigenvectors, become
0.984 and 0.999, respectively as seen Table 5. On the other hand, in case of using coarse analytical
model, 9th and 12th updated MACs were 0.369 and 0.376, respectively, as seen in Table 5.

It should be noted that the SN ratio plots in Figs. 8 and 9 may not be always monotonous
increasing even though the scheme employed in this work maximizes the SN ratio at each
iteration. The problem is mainly caused by interactions among the parameters. The interactions
can be classified according the degree of interaction as seen in Fig. 10 [15]. If the interaction is
large as in case of Fig. 10(c), then the updating of one parameter affects the updating of the other
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Table 5

Modal data of initial and updated coarse analytical model of truss structure (using first 8 modes as reference data)

Modes Reference data Analytical model Initial MAC Updated model Updated MAC

(Hz) (initial eigenvalue) (diagonal) (eigenvalue) (diagonal)

1 46.09 46.39 ð0:64Þ� 1.000 46.34 ð0:53Þ� 1.000

2 83.27 82.13 ð�1:36Þ� 0.999 81.92 ð�1:62Þ� 0.999

3 234.93 237.89 ð1:26Þ� 0.997 233.23 ð�0:72Þ� 0.999

4 257.36 256.01 ð�0:52Þ� 0.999 254.65 ð�1:05Þ� 1.000

5 378.17 387.72 ð2:53Þ� 0.995 380.54 ð0:63Þ� 0.999

6 426.29 449.16 ð5:36Þ� 0.838 430.16 ð0:91Þ� 0.997

7 446.03 462.43 ð3:68Þ� 0.947 448.35 ð0:52Þ� 0.996

8 482.55 483.93 ð0:29Þ� 0.948 485.73 ð0:66Þ� 0.998

9 488.22 503.01 ð3:03Þ� 0.119 503.87 ð3:21Þ� 0.369

10 501.34 517.51 ð3:23Þ� 0.551 507.93 ð1:31Þ� 0.981

11 509.4 534.51 ð4:93Þ� 0.000 528.48 ð3:75Þ� 0.945

12 518.7 536.9 ð3:51Þ� 0.015 539.46 ð4:00Þ� 0.376

13 543.41 572.0 ð5:26Þ� 0.947 527.05 ð5:27Þ� 0.948

14 615.86 650.23 ð5:58Þ� 0.951 630.06 ð2:31Þ� 0.991

15 668.89 691.98 ð3:45Þ� 0.766 686.06 ð2:58Þ� 0.939

16 703.24 716.92 ð1:95Þ� 0.882 717.94 ð2:09Þ� 0.942

17 761.21 808.14 ð6:17Þ� 0.953 795.99 ð4:57Þ� 0.969

18 862.37 906.15 ð5:08Þ� 0.128 899.77 ð4:34Þ� 0.095

19 879.78 973.58 ð10:66Þ� 0.199 959.47 ð9:06Þ� 0.149

20 884.05 982.20 ð11:10Þ� 0.238 984.55 ð11:37Þ� 0.454

ð Þ�: errors (%).
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parameters. As a result, SN ratio may not increase monotonously. To consider the whole
interactions among parameters concerned can be very complicated process [15]. The severe
interactions shown in Fig. 10(c) are related with overshooting of parameters from the optimum
value in model updating application [20]. In this study, a level interval adjusts its value into
smaller value when the updated parameter becomes close to the optimum value as explained in
Fig. 2(b). In addition, the overshooting from the target value can be adjusted by the increasing or
decreasing the parameter using Eq. (13) to maximize the SN ratio. Therefore, optimum
parameters can be reached by iterative way even in case of non-monotonous increase in SN
ratio due to interactions.

5. Concluding remarks

Taguchi method, which has been widely used in robust design and quality engineering
application, is effectively applied to FE model updating by optimizing the objective function. The
updated results of two numerical examples of cantilever beam and truss structure indicate that the
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proposed method is robust against various errors including random and systematic errors.
Moreover, the method can be computationally efficient due to the use of orthogonal array rather
than relying on stochastic search.

For reference data, frequency data as well as modal data can be used for model updating using
Taguchi method. However, the model updating using frequency data might be more difficult
because selected frequency points should have monotonous characteristics of FRF. In addition,
there can be some loss of information in the process of selecting frequency points. Insufficient
information is very likely to lead to local minimum solutions of the objective function. Therefore,
modal data, which are believed to be essence form of a large number of FRF data, are
recommended to be used for reference data of updating using Taguchi method.

If the effect of discretization errors, which are inherent in analytical FE model, is significant, the
updated results are likely to be affected. Therefore, the discretization errors should be investigated
prior to updating. However, the discretization effect on updated results can be reduced to an
acceptable level by using fine analytical FE model.

The proposed method can be extended to a case where a large number of parameters need to be
updated. However, it should be noted that updated results may not reach global minimum
solutions if the information in objective functions is not sufficient for updating parameters
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concerned due to incomplete measurement coordinates or limited number of modes used for
reference data. Furthermore, the convergence is likely to be slow if a lot of parameters have strong
interactions one another.

ARTICLE IN PRESS

Table 6

Modal data of initial and updated fine analytical model of truss structure (using first 8 modes as reference data)

Modes Reference data Analytical model Initial MAC Updated model Updated MAC

(Hz) (initial eigenvalue) (diagonal) (eigenvalue) (diagonal)

1 46.09 46.38 ð0:63Þ� 1.000 46.31 ð0:47Þ� 1.000

2 83.27 82.08 ð�1:43Þ� 0.999 82.4 ð�1:04Þ� 0.999

3 234.93 236.49 ð0:66Þ� 0.997 234.48 ð�0:19Þ� 0.999

4 257.36 255.31 ð�0:80Þ� 0.999 256.52 ð�0:33Þ� 1.000

5 378.17 381.87 ð0:98Þ� 0.995 380.63 ð0:65Þ� 0.999

6 426.29 437.92 ð2:73Þ� 0.860 427.15 ð0:20Þ� 0.999

7 446.03 449.13 ð0:70Þ� 0.952 445.29 ð�0:17Þ� 0.999

8 482.55 472.58 ð�2:07Þ� 0.913 480.75 ð�0:37Þ� 1.000

9 488.22 489.55 ð0:27Þ� 0.125 494.02 ð1:19Þ� 0.984

10 501.34 507.31 ð1:19Þ� 0.508 502.48 ð0:23Þ� 0.998

11 509.4 519.13 ð1:91Þ� 0.116 514.5 ð1:00Þ� 0.998

12 518.7 520.07 ð0:26Þ� 0.165 524.7 ð1:16Þ� 0.999

13 543.41 553.39 ð1:84Þ� 0.968 552.29 ð1:63Þ� 0.999

14 615.86 639.18 ð3:79Þ� 0.978 622.81 ð1:13Þ� 0.999

15 668.89 672.17 ð0:49Þ� 0.951 671.94 ð0:46Þ� 0.999

16 703.24 700.88 ð�0:34Þ� 0.994 706.99 ð0:53Þ� 0.998

17 761.21 777.74 ð2:17Þ� 0.983 776.31 ð1:98Þ� 0.998

18 862.37 889.00 ð3:09Þ� 0.191 887.75 ð2:94Þ� 0.253

19 879.78 916.47 ð4:17Þ� 0.377 892.91 ð1:49Þ� 0.606

20 884.05 919.17 ð3:97Þ� 0.077 915.4 ð3:55Þ� 0.901

ð Þ�: errors (%).
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Fig. 10. Interaction between parameters: (a) no interaction; (b) synergistic interaction; and (c) antisynergistic

interaction.
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